Tag Deep Learning
Marginalia: Rebooting AI by Gary Marcus and Ernest Davis
With this new year, let’s try a new format. Marginalia will be a series in which I’ll share notes and comments on interesting books I read. The name is directly inspired by the old word indicating the small notes on the margins of books.
It will be a chance to discuss my readings without the need to write a full-fledged article. I hope it will be interesting as a review of the book or as a discussion starter. So, let’s start.
Questions about Deep Learning and the nature of knowledge
If there is something that can be assumed as a fact in the AI and Machine Learning domain is that the last years had been dominated by Deep Learning and other Neural Network based techniques. When I say dominated, I mean that it looks like the only way to achieve something in Machine Learning and it is absorbing the great part of AI enthusiasts’ energy and attention.
This is indubitably a good thing. Having a strong AI technique that can solve so many hard challenges is a huge step forward for humanity. However, how everything in life, Deep Learning, despite being highly successful in some application, carries with it several limitations to that, in other applications, makes the use of Deep Learning unfeasible or even dangerous.